最短路径 ¶
最短路径¶
此示例演示如何找到加权和无权图中两个顶点之间的最短距离。
要查找两个节点之间的最短路径或距离,我们可以使用 get_shortest_paths()
。如果我们只对计算无权距离感兴趣,那么我们可以这样做
import igraph as ig
import matplotlib.pyplot as plt
# Find the shortest path on an unweighted graph
g = ig.Graph(
6,
[(0, 1), (0, 2), (1, 3), (2, 3), (2, 4), (3, 5), (4, 5)]
)
# g.get_shortest_paths() returns a list of vertex ID paths
results = g.get_shortest_paths(1, to=4, output="vpath") # results = [[1, 0, 2, 4]]
if len(results[0]) > 0:
# The distance is the number of vertices in the shortest path minus one.
print("Shortest distance is: ", len(results[0])-1)
else:
print("End node could not be reached!")
如果边有权重,我们将它们作为参数传入。请注意,我们将输出格式指定为 "epath"
,以便接收作为边列表的路径。这用于计算路径的长度。
# Find the shortest path on a weighted graph
g.es["weight"] = [2, 1, 5, 4, 7, 3, 2]
# g.get_shortest_paths() returns a list of edge ID paths
results = g.get_shortest_paths(
0,
to=5,
weights=g.es["weight"],
output="epath",
)
# results = [[1, 3, 5]]
if len(results[0]) > 0:
# Add up the weights across all edges on the shortest path
distance = 0
for e in results[0]:
distance += g.es[e]["weight"]
print("Shortest weighted distance is: ", distance)
else:
print("End node could not be reached!")
这两个最短路径的输出是
Shortest distance is: 3
Shortest weighted distance is: 8

图 g,其中突出显示了从顶点 0 到顶点 5 的最短路径。¶
注意
get_shortest_paths()
返回一个列表的列表,因为 to 参数也可以接受顶点 ID 的列表。在这种情况下,将找到到每个顶点的最短路径并存储在结果数组中。如果您有兴趣查找所有最短路径,请查看
get_all_shortest_paths()
。
如果您想知道可视化图形是如何完成的,这是代码
import igraph as ig
import matplotlib.pyplot as plt
# Construct the graph
g = ig.Graph(
6,
[(0, 1), (0, 2), (1, 3), (2, 3), (2, 4), (3, 5), (4, 5)]
)
g.es["weight"] = [2, 1, 5, 4, 7, 3, 2]
# Get a shortest path along edges
results = g.get_shortest_paths(
0,
to=5,
weights=g.es["weight"],
output="epath",
)
# results = [[1, 3, 5]]
# Plot graph
g.es['width'] = 0.5
g.es[results[0]]['width'] = 2.5
fig, ax = plt.subplots()
ig.plot(
g,
target=ax,
layout='circle',
vertex_color='steelblue',
vertex_label=range(g.vcount()),
edge_width=g.es['width'],
edge_label=g.es["weight"],
edge_color='#666',
edge_align_label=True,
edge_background='white'
)