拓扑排序 ¶
拓扑排序¶
此示例演示了如何在有向无环图 (DAG) 上获取拓扑排序。有向图的拓扑排序是基于有向边隐含的优先级的线性排序。当且仅当图没有任何环时,它才存在。在 igraph
中,我们可以使用 topological_sorting()
来获取顶点的拓扑排序。
import igraph as ig
# generate a directed acyclic graph (DAG)
g = ig.Graph(
edges=[(0, 1), (0, 2), (1, 3), (2, 4), (4, 3), (3, 5), (4, 5)],
directed=True,
)
assert g.is_dag
# g.topological_sorting() returns a list of node IDs
# If the given graph is not DAG, the error will occur.
results = g.topological_sorting(mode='out')
print('Topological sort of g (out):', *results)
results = g.topological_sorting(mode='in')
print('Topological sort of g (in):', *results)
topological_sorting()
有两种模式。'out'
是默认模式,它从入度等于 0 的节点开始。相反,模式 'in'
从出度等于 0 的节点开始。
上面代码的输出是
Topological sort of g (out): 0 1 2 4 3 5
Topological sort of g (in): 5 3 1 4 2 0
我们可以使用 indegree()
来查找节点的入度。
import igraph as ig
# generate directed acyclic graph (DAG)
g = ig.Graph(edges=[(0, 1), (0, 2), (1, 3), (2, 4), (4, 3), (3, 5), (4, 5)],
directed=True)
# g.vs[i].indegree() returns the indegree of the node.
for i in range(g.vcount()):
print('degree of {}: {}'.format(i, g.vs[i].indegree()))
'''
degree of 0: 0
degree of 1: 1
degree of 2: 2
degree of 3: 3
degree of 4: 4
degree of 5: 5
'''

具有拓扑排序的图 g。¶
我们可以很容易地绘制拓扑排序后的图,如下所示
import igraph as ig
import matplotlib.pyplot as plt
# generate a directed acyclic graph (DAG)
g = ig.Graph(
edges=[(0, 1), (0, 2), (1, 3), (2, 4), (4, 3), (3, 5), (4, 5)],
directed=True,
)
# visualization (use xkcd style for a different flavor)
with plt.xkcd():
fig, ax = plt.subplots(figsize=(5, 5))
ig.plot(
g,
target=ax,
layout='kk',
vertex_size=0.3,
edge_width=4,
vertex_label=range(g.vcount()),
vertex_color="white",
)